If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-15b+50=0
a = 1; b = -15; c = +50;
Δ = b2-4ac
Δ = -152-4·1·50
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5}{2*1}=\frac{10}{2} =5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5}{2*1}=\frac{20}{2} =10 $
| 3.6x=28.8 | | 3c-6=45 | | 2t^2-15t+35=0 | | 3.9x=31.2 | | 10x-7=9x-15 | | 6=3p-9p | | 6=3p-6 | | x15×0.75=13×50x | | 7(7+2l)=3(9l-1 | | 3x-9+4x=2(18-x) | | -81=7x+38 | | -4x-x+5=-5(x-1) | | 1/9=27^(3x-6) | | 17x=81/17 | | x+6=2x-54 | | 2(l+1)=3(l+5) | | x+6=2x-54,x=60 | | 5(x-3)=-3x+8x+3 | | 3(2x+4=5(x-2 | | 4*2*3x=72 | | 8f-25=57 | | 2(x+)=3x-3 | | X²+2x+7=0 | | 9/x=3/8 | | 10+x=0.3(x+45) | | D=1/2g6•6 | | 6y^2+10=19y | | 7^(x+3)=15 | | 11x+2=4x+7 | | (x+4)2=361 | | 7^x+3=15 | | 4(x+12=6 |